SOMMAIRE

7	CHAPITRE 1 : Domaine d'application du guide		
7	1. Présentation du guide		
8	2. Terminologie		
13	CHAPITRE 2 : Cadre réglementaire et normatif		
13	1. Réglementation incendie		
13	2. Sécurité		
15	3. Protection contre les brûlures		
17	CHAPITRE 3 : Choix du type de réseau		
17	1. Modes de pose		
18	2. Utilisation de fourreau		
19	CHAPITRE 4 : Conception des réseaux		
19	1. Réseau pieuvre		
20	2. Réseau avec piquage ou en cascade		
21	3. Dimensionnement		
23	4. Homogénéité		
23	5. Protection contre le gel		
25	6. Dilatation des tubes		
27	CHAPITRE 5 : Choix des canalisations et des raccordements		
27	1. Canalisations métalliques		
34	2. Canalisations en matériaux de synthèse		
41	CHAPITRE 6 : Collecteurs		
41	1. Collecteur laiton		
42	2. Collecteur en matériaux de synthèse		
42	3. Emplacement des collecteurs-distributeurs		
45	CHAPITRE 7 : Canalisations métalliques		
45	1. Prescriptions communes		
47	2. Canalisations en acier galvanisé		
47	3. Canalisations en cuivre		
58	4. Mode de raccordement des canalisations en acier inoxydable		
59	CHAPITRE 8 : Canalisations en matériaux de synthèse		
59	1. Mode de pose		
60	2. Tube nu		
63	3. Tube sous fourreau		

67	CHAPITRE 9 : Canalisations incorporées	
67	1. Canalisations incorporées dans les planchers	
70	2. Canalisations incorporées dans les parois verticales	
75	CHAPITRE 10 : Supportages et compensation des dilatations	
76	1. Types de support	
79	2. Points fixes	
81	CHAPITRE 11 : Raccordement aux appareils	
81	1. Sortie de cloison	
90	2. Sortie de dalle ou de chape	
92	3. Exemples de réalisations	
97	CHAPITRE 12 : Mise en service	
97	1. Rinçage	
97	2. Essais d'étanchéité	
98	3. Désinfection avant mise en service	
99	Abréviations	
101	Réglementation, normes et autres documents de référence	
101	1. Réglementation	
102	2. DTU - normes de mise en œuvre	
103	3. Cahier de Prescriptions Techniques communes (CPT)	
104	4. Normes	
105	5. Autres documents de référence	
107	Glossaire	
109	Index	

Pour les installations individuelles, suivre la méthode de calcul suivante :

- lister les appareils à alimenter;
- faire la somme des coefficients des appareils ;
- lire le diamètre intérieur minimum sur l'abaque (figure 4).

Exemple de calcul

Déterminer le diamètre d'une canalisation d'eau froide sanitaire qui doit desservir une cuisine. La canalisation alimente un évier, un lave-linge et un lave-vaisselle.

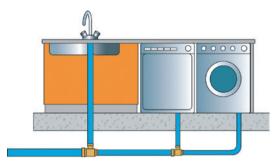


Figure 3 : Points à alimenter

Tableau 3 : Coefficients des appareils

Points à alimenter	Coefficient K
Évier	2,5
Lave-linge	1
Lave-vaisselle	1
Somme	4,5

La lecture de l'abaque donne un diamètre intérieur de 14, soit un tube cuivre de diamètre 16 x 1 mm ou de type PE-X de 20 x 1,9 mm.

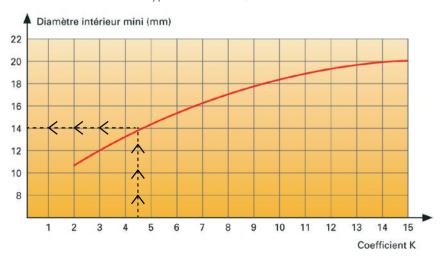


Figure 4 : Abaque de détermination du diamètre intérieur en fonction de la somme des coefficients K.

Raccords à glissement

Le maintien et l'étanchéité sont réalisés par serrage et déformation du tube entre un insert et une bague extérieure mise en place par glissement à l'aide d'un outillage spécifique (voir le certificat QB associé).

Figure 7 : Raccord à glissement

Ces raccords sont considérés comme indémontables : impossibilité de dissocier le tube du raccord sans couper le tube.

Raccords à sertir

Le maintien et l'étanchéité sont réalisés par écrouissage de la bague extérieure et déformation du tube entre un insert et une bague extérieure sertie à l'aide d'un outillage spécifique.

Le profil de sertissage, la mâchoire et la machine doivent correspondre aux préconisations décrites dans le certificat QB associé.

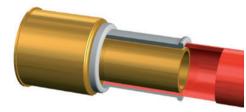


Figure 8 : Raccord à sertir

Ces raccords sont considérés comme indémontables : impossibilité de dissocier le tube du raccord.

Raccords instantanés

L'étanchéité est réalisée par des joints. Le maintien du tube est réalisé par l'intermédiaire d'une bague de « crampage ».

Figure 9 : Raccord instantané

Ces raccords sont, selon leur conception, démontables ou pas.

Ils doivent être accessibles, une trappe de visite est obligatoire.

Les raccords indémontables sont autorisés : il faut cependant prendre toutes les précautions utiles pour protéger les raccords (boîtier étanche, papier huilé, etc.).

ATTENTION

Toute canalisation non fourreautée, noyée dans le gros œuvre ne pourra être remplacée, sauf à démolir la dalle. Afin de prévenir tout risque, il est préférable de mettre en place un tube sous fourreau.

2.2 Tubes en couronnes

Mode opératoire :

- Après avoir vérifié les hauteurs de réservation (nu du sol brut nu sol fini) et avoir positionné le collecteur, partir du distributeur vers le point de puisage en effectuant un « esse ».
- Dérouler le tube en sens inverse de l'enroulement de la couronne. Cela évite le « rebiquage » intempestif après coupe en particulier pour les tubes PE-X.
- Couper le tube à longueur + 10 cm au moyen d'un coupe-tube.
- Raccorder aux appareils.
- Maintenir les tubes au moyen de cavaliers et/ou de chevilles en plastique.
- Faire les essais pression.
- Resserrer les raccords si nécessaire.

ATTENTION

Ne pas utiliser de scie à métaux, tenailles, sécateur ou tout autre instrument ne permettant pas une coupe franche et droite.

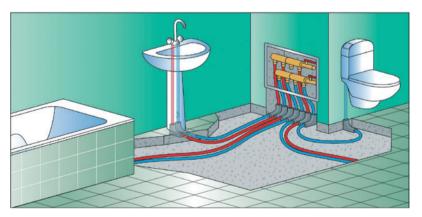


Figure 4: Tubes en couronne

Mise en œuvre

Mode opératoire :

- Mise en place des conduites derrière les plaques de plâtre.
- Fixation des conduites.
- Mise en œuvre des plaques de plâtre.
- Percement de la plaque au diamètre correspondant au passage du raccord du tube.
- Mise en place du fourreau et /ou du tube prégainé.
- Raccordement du tube.
- Assemblage de la patère.
- Fixation directe de la patère sur la plaque de plâtre ou fixation sur la platine.
- Fixation au-dessus ou au-dessous de l'appareil.
- Ajustage de l'entraxe, si nécessaire.
- Resserrage du centreur de raccord.
- Obturation des raccords.
- Mise en pression et essais d'étanchéité.
- Mise en œuvre du revêtement de finition.

Étape 1 : Percer la plaque avec une scie cloche de diamètre 54 mm et sortir les tubes prégainés et ajuster la longueur de gaine.

Étape 2: Percer 4 trous (8 mm) sans les tubes et positionner les chevilles à expansion directement sur la platine.

Étape 3 :Raccorder les tubes aux patères.

Étape 4 :
Fixer le support sur la plaque à l'aide des chevilles à expansion.
L'épaisseur réduite de la platine lui permettra d'être aisément noyé dans le ciment colle pour faïence.

Figure 3 : Étapes de raccordement en applique