SOMMAIRE

1.	OBJET	3
2.	DOMAINE D'APPLICATION	5
3.	GUIDE D'APPLICATION POUR LE CALCUL DES ASSEMBLAGES	7
31	Généralités	
3.2	Domaine d'application	7
3.3	Attaches poutre-poutre – Résistance	9
3.4	Attaches poteau-poutre – Résistance	
3.5	Analyse globale	45
3.6	Attaches poutre-poutre – Rigidité	
3.7	Attaches poteau-poutre – Rigidité	53
3.8	Tables	
3.9	Notations	
3.10	Exemple de calcul n° 1 : assemblage poutre-poutre non raidie	69
3.11	Exemple de calcul n° 2 : assemblage poutre-poutre raidie	
3.12	Exemple de calcul n° 3 : assemblage poutre-poteau non raidi	
3.13	Exemple de calcul n° 4 : assemblage poteau-poutre raidle	139
Л		
4.	ARTICULÉS PAR CORNIÈRES D'ÂME	165
41	Généralités	105
4.2	Domaine d'application	165
4.3	Fonctionnement de l'assemblage	
4.4	Cas étudiés	
4.5	Cas d'un élément porteur ayant une rigidité de rotation nulle	
4.6	Cas d'un élément porteur infiniment raide en rotation	
4.7	Exemples	
4.8	Tables de capacité d'attaches types	
5.	GUIDE D'APPLICATION POUR LE CALCUL DES ASSEMBLAGES	
- 4	DE CONTINUITE PAR ECLISSAGE D'AME ET DE SEMELLES	
5.1	Objet	
5.Z	Domaine d'application	
5.3	Generalites	
5.4 5.5	Assemblage de catégorie C : resistant au glissement à l'ELU	
5.5	Assemblage de catégorie B : résistant en pression diametrale	270
5.7	Tables	7 / 3. 281
5.8	Exemples d'application	426
5.0		
6.	RÉFÉRENCES	

3.10.5.3 Rigidité en rotation initiale S_{i.ini} (cf. clause 6.3.1 (4) de la norme NF EN 1993-1-8)

 $S_{j,ini} = E \times Z_{\acute{e}q}^2 \times K_{\acute{e}q}.$

 $S_{j,ini} = 210\ 000\ x\ (453,85\)^2\ x\ 16,175 = 699\ 662\ kN.m/rad.$

3.10.5.4 Classification (cf. clause 5.2.2.5 (1) de la norme NF EN 1993-1-8)

 $I_{\rm b} = 48\ 200\ {\rm cm}^4$ (IPE 500).

 $E I_{\rm b}/S_{\rm i,ini} = 10^6 \text{ x } 210\ 000 \text{ x } 48\ 200 \text{ x } 10^{-8} / (699\ 662 \text{ x } 10^3) = 144,66 \text{ mm}.$

Zone 3 : assemblage nominalement articulé : $S_{j,ini} \le 0.5 E I_b/L_b$. Pour être articulé, il faudrait : $L_b \le 72,33$ mm.

Zone 1 : assemblage rigide $S_{j,ini} > k_b E I_b/L_b$ avec : $k_b = 8$ pour les ossatures contreventées : $L_b \ge 1,16$ m ; $k_b = 25$ sinon $L_b \ge 3,62$ m.

Pour $L_b \ge 3,32$ m (réaliste avec une section en IPE 500), l'assemblage est considéré rigide.

3.11 Exemple de calcul n° 2 : assemblage poutre-poutre raidie

3.11.1 Données

Figure 3.43 : Schéma de l'assemblage poutre-poutre à vérifier.

Figure 4.22 : Efforts côté poutre porteuse.

4.5.2.3 Résistance des boulons

Poutre portée
$$\frac{V_{1s}}{2F_{V,Rd}} \leq 1 \quad \Rightarrow \quad V_{v_{bok},s,Rd} = 2F_{V,Rd} / \left(1 + \frac{L}{p_h}\right).$$
Poutre porteuse
$$\frac{V_{1p}}{F_{V,Rd}} \leq 1 \quad \Rightarrow \quad V_{v_{bok},p,Rd} = 2F_{V,Rd} / \left(1 + \frac{L_p}{p_h}\right).$$

4.5.2.4 Vérification de la poutre porteuse

Pression diamétrale composante verticale seule :

$$- \alpha_{d} = 1; \alpha_{b} = Min\left(\alpha_{d}; \frac{f_{ub}}{f_{u,p}}; 1,0\right)$$
$$- k_{1} = min\left(2,5; 1,4\frac{p_{h}}{d_{0}} - 1,7\right);$$
$$- F_{b,p,Rd} = \frac{K_{1}\alpha_{b}f_{u,p}dt_{w,p}}{\gamma_{M2}}.$$

On vérifie que : $\frac{V_{1p}}{F_{b,p,Rd}} \le 1$.

On peut aussi en déduire l'épaisseur minimale de l'âme de la poutre en fonction de sa nuance :

$$t_{w,p} \ge \frac{V_{Ed} \gamma_{M2}}{2k_1 \alpha_b f_{u,p} d} \left(1 + \frac{L_P}{p_h}\right).$$

CSTB ÉDITIONS

4.8 Tables de capacité d'attaches types

4.8.1 Assemblages à plusieurs lignes de boulons

4.8.1.1 Tables de capacité

Les tables de capacité des assemblages fournissent la valeur minimale $V_{\rm Rd}$ de tous les modes de rupture ou d'instabilité étudiés couvrant une utilisation sur support souple ou raide :

 $V_{\rm Rd} = {\rm Min} \left[V_{\rm Rd,art}; V_{\rm Rd,rig} \right].$

Elles sont établies par attaches types en doubles cornières de la manière suivante :

- les attaches types ont une hauteur variant de 80 à 440 mm adaptée aux hauteurs droites des profils selon le tableau suivant :

Lc							
80	IPE 140		HEA 160			HEB 160	
95	IPE 160		HEA 180			HEB 180	
110	IPE 180		HEA 200			HEB 200	
130	IPE 200	IPE 220	HEA 220	HEA 240		HEB 220	
150	IPE 240		HEA 260			HEB 240	HEB 260
180	IPE 270		HEA 280	HEA 300	HEA 320	HEB 280	HEB 300
220	IPE 300	IPE 330	HEA 340	HEA 360		HEB 320	HEB 340
260	IPE 360		HEA 400			HEB 360	HEB 400
310	IPE 400		HEA 450			HEB 450	
360	IPE 450	IPE 500	HEA 500			HEB 500	
440	IPE 550	IPE 600	HEA 550	HEA 600		HEB 550	HEB 600

Tableau 4.17 : Tableau d'utilisation des cornières.

- les boulons utilisés et les conditions de leur utilisation avec les cornières sont définis comme suit :

d boulon (mm)	12	16	20	24
Pince e _c (mm)	18	24	30	36
Ø trou d _o (mm)	13	18	22	26

Tableau 4.18 : Pinces et diamètres des trous en fonction des diamètres de boulons (6.8 et 8.8).

5. GUIDE D'APPLICATION POUR LE CALCUL DES ASSEMBLAGES DE CONTINUITÉ PAR ÉCLISSAGE D'ÂME ET DE SEMELLES

Figure 5.37: Pinces sur l'éclisse extérieure.

427

t_{ee}

5.8.4 Vérifications en catégorie A : analyse plastique

5.8.4.1 Section Σ_1 : vérification en section nette

Condition pour que l'assemblage transmette la pleine capacité de la

section :
$$A_{net} \ge \frac{A}{K}$$
;
avec : $K \ge \frac{f_{u,p}}{1,389 f_{y,p}}$ pour un profil en S275 : $K = 1,073$.

On remplace alors A_{net} par KA_{net} dans les parties tendues.

Le profil HEB 400 est de classe 1 en flexion pure, il est donc possible de mener une analyse plastique.

Effort tranchant

$$V_{Ed} \le V_{pl,Rd} = \frac{A_v f_{y,p}}{\sqrt{3} \gamma_{M0}}.$$

$$V_{pl,Rd} = \frac{A_v f_{y,p}}{\sqrt{3} \gamma_{M0}} = \frac{7000 \times 275}{\sqrt{3}} = 1\ 111,4\ kN \ge V_{Ed} = 278\ kN.$$

Critere = 0,25.
$$\frac{V_{\text{pl,Rd}}}{2} = \frac{1\ 111,4}{2} = 555,7\ \text{kN} > V_{\text{Ed}} = 278\ \text{kN}.$$

Pas d'interaction entre effort tranchant et moment fléchissant.

Moment fléchissant

$$M_{\rm Ed} + \Delta_1 V_{\rm Ed} \le M_{\rm pl,Rd,net} = \frac{W_{\rm pl,netMin} t_{\rm y,p}}{\gamma_{\rm M0}}.$$

 $M_{\rm Ed} + V_{\rm Ed} \Delta_1 = 570 + 278 \times 0.32 = 659 \text{ kN}.$

Calcul de $W_{\rm pl,net}$: la position de l'axe neutre plastique est modifiée par rapport au calcul en catégorie C :

 $- b_{\rm p} t_{\rm fp} + (v_{\rm min} - t_{\rm fp}) t_{\rm wp} = (b_{\rm p} - 2d_{\rm of}) t_{\rm fp} + (h_{\rm p} - v_{\rm min} - t_{\rm fp}) t_{\rm wp};$

$$- 2d_{of}t_{fp} + 2v_{min}t_{wp} = h_{p}t_{wp};$$

$$- v_{min} = \frac{h_{p}}{2} - \frac{d_{of}t_{fp}}{t_{wp}};$$

$$- v_{min} = \frac{400}{2} - \frac{30 \times 24}{13,5} = 146,67 \text{ mm};$$

$$- v_{max} = h_{p} - v_{min} = 400 - 146,67 = 253,33 \text{ mm}.$$