SOMMAIRE

Avant-propos .. 3

ÉTAPE 1

OPÉRATIONS PRÉALABLES À LA MISE EN ŒUVRE

1 Choix de la destination et de la pente de la toiture terrasse ... 15
2 Destination de la toiture terrasse : choix de l’élément porteur en fonction de la destination ... 16
3 Pentes des terrasses inaccessibles .. 17
4 Pentes des terrasses accessibles .. 18
5 Pentes des terrasses jardins ... 19
6 Pentes des toitures-terrasses végétalisées ... 20

ÉTAPE 2

VÉRIFICATION DU SUPPORT

7 Vérifier le support ... 23

ÉTAPE 3

METTRE EN ŒUVRE LE PARE-VAPEUR

8 Pare-vapeur avec EAC sans bitume oxydé sur local à faible et moyenne hygrométrie, élément porteur en maçonnerie ... 27
9 Pare-vapeur avec EAC sans bitume oxydé sur local à forte hygrométrie ou planchers chauffants ou local en climat de montagne, élément porteur en maçonnerie .. 28
10 Pare-vapeur avec EAC sans bitume oxydé, sur local à très forte hygrométrie ou plancher chauffant assurant la totalité du chauffage, élément porteur en maçonnerie .. 29
11 Pare-vapeur sans EAC sous revêtement avec protection lourde, sur local à moyenne et faible hygrométrie .. 30
12 Pare-vapeur sans EAC sous revêtement avec protection lourde sur local à forte hygrométrie .. 31
13 Pare-vapeur sans EAC sous revêtement avec protection lourde sur local à très forte hygrométrie .. 32
14 Pare-vapeur synthétique sous revêtement apparent sur local à faible à moyenne hygrométrie .. 33
15 Pare-vapeur sans EAC sous revêtement apparent sur local à forte hygrométrie .. 34
16 Pare-vapeur sans EAC sous revêtement apparent sur local à très forte hygrométrie .. 35
ÉTAPE 4

METTRE EN ŒUVRE LES PANNEAUX ISOLANTS

28 Mettre en œuvre les panneaux isolants ... 51
29 Isolant admis selon l’élément porteur ... 53
30 Domaine d’utilisation des panneaux isolants ... 54
31 Choix des isolants et principe de mise en œuvre en fonction des complexes d’étanchéité ... 55
32 Mise en œuvre des panneaux isolants support d’étanchéité 57
33 Fixation mécanique des panneaux isolants supports d’étanchéité en partie courante ... 59
34 Système d’isolation composée non porteur support d’étanchéité 60
ÉTAPE 5

METTRE EN ŒUVRE LE COMPLEXE D'ÉTANCHÉITÉ

35 Mettre en œuvre le complexe d’étanchéité ... 63
36 Liaison du revêtement d’étanchéité au support .. 64
37 Classement performanciel des revêtements d’étanchéité : FIT 65
38 Domaines d’utilisation des systèmes bicouches SBS .. 67
39 Assemblage par thermosoudure des feuilles bitumineuses (cas général) 69
40 Assemblage : traitement des jonctions sans galon ... 71
41 Assemblage des membranes synthétiques thermoplastiques par thermosoudure ... 72
42 Assemblage des membranes synthétiques thermoplastiques par liaison à froid ... 74
43 Mise en œuvre en indépendance ... 76
44 Mise en œuvre en indépendance d’un système bicouche bitumineux : terrasse isolée sur élément porteur en maçonnerie (cas du PSE) 77
45 Mise en œuvre en indépendance : cas du polystyrène expansé sans écran thermique ... 78
46 Mise en œuvre en indépendance : monocouche bitumineux 79
47 Monocouche en membrane synthétique thermoplastique : écrans de séparation mécanique ou chimique ... 80
48 Mise en œuvre en semi-indépendance .. 81
49 Semi-indépendance par des plots de colle à froid : bicouche et monocouche bitumineux ... 82
50 Semi-indépendance par écran perforé : bicouche bitumineux 83
51 Semi-indépendance par écran perforé : monocouche bitumineux 84
52 Semi-indépendance par feuille adhésive à froid ... 85
53 Semi-indépendance par fixation mécanique : fixation en lisières de lés 86
54 Semi-indépendance par fixation mécanique : fixations sous bande de pontage ... 87
55 Semi-indépendance par fixation mécanique : fixations sous bande de collage ... 88
56 Système adhérent : bicouche ou monocouche bitumineux 89
57 Système adhérent : membrane synthétique thermoplastique 90
58 Système adhérent : membrane synthétique vulcanisée 91
59 Fixation mécanique : caractéristiques .. 92
60 Fixation mécanique : mise en œuvre .. 94
61 Bicouche bitumineux fixé mécaniquement : principe de mise en œuvre 95
62 Bicouche bitumineux : principe de répartition des rangées de fixation 96
63 Monocouche bitumineux : principe de fixation ... 97
64 Monocouche synthétique : principe de répartition des rangées de fixation 98
65 Densités de fixation : implantation type d’une toiture avec revêtement fixé mécaniquement ... 99
66 Membranes synthétiques : principes de fixation en lisière 100
67 Membranes synthétiques : principes de fixation en ligne intermédiaire 101
68 Membranes synthétiques : principe de fixation avec bandes de collage 102
ÉTAPE 6

METTRE EN PLACE LA PROTECTION RAPPORTÉE

69 Protection lourde sur revêtement bitumineux ou membrane synthétique :
protection meuble ..105

70 Protection lourde dure : chape en mortier ou en béton coulé en place
sur revêtement bitumineux et membrane synthétique,
terrasses accessibles aux piétons ..106

71 Protection lourde par dalles maçonnées sur plots réglables sur revêtement
bitumineux ou membrane synthétique : terrasses accessibles aux piétons........107

72 Protection lourde par dalles en béton préfabriquées
ou pierre naturelle sur revêtement bitumineux
et membrane synthétique : terrasses accessibles aux piétons.........................108

73 Protection lourde dure sur revêtement bitumineux :
terrasses accessibles aux véhicules légers...109

74 Protection lourde dure sur revêtement bitumineux :
terrasses accessibles aux véhicules lourds...110

75 Protection sur revêtement bitumineux et membrane synthétique :
protection pour terrasses jardins..111

76 Protection sur revêtement bitumineux et membrane synthétique :
protection par un système de végétalisation...112
<table>
<thead>
<tr>
<th>ÉTAPE</th>
<th>RÉALISER LES POINTS SINGULIERS ET LES OUVRAGES PARTICULIERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>77</td>
<td>Support de relevés d’étanchéité : béton ou maçonnerie d’éléments pleins 115</td>
</tr>
<tr>
<td>78</td>
<td>Support de relevés d’étanchéité : costières métalliques sur tôles d’acier nervurées 117</td>
</tr>
<tr>
<td>79</td>
<td>Support de relevés d’étanchéité : costières sur éléments porteurs en bois 118</td>
</tr>
<tr>
<td>80</td>
<td>Support de relevés d’étanchéité : dimensionnement des costières sur éléments porteurs en bois .. 119</td>
</tr>
<tr>
<td>81</td>
<td>Dimensionnement des protections/hauteur des relevés en béton ou maçonnerie d’éléments pleins .. 120</td>
</tr>
<tr>
<td>82</td>
<td>Panneau isolant : fixation sur reliefs en maçonnerie ou sur costières en bois massif ou contreplaqué ... 122</td>
</tr>
<tr>
<td>83</td>
<td>Panneau isolant : fixation sur costières métalliques .. 124</td>
</tr>
<tr>
<td>84</td>
<td>Relevé sur ancien revêtement d’étanchéité ... 126</td>
</tr>
<tr>
<td>85</td>
<td>Relevés en feuilles bitumineuses SBS : recouvrement des éléments 127</td>
</tr>
<tr>
<td>86</td>
<td>Relevés en feuilles bitumineuses SBS : terrasses inaccessibles ou accessibles aux piétons ... 128</td>
</tr>
<tr>
<td>87</td>
<td>Relevés raccordés à un revêtement bicouche SBS : terrasses inaccessibles sur éléments porteurs et relief en maçonnerie .. 129</td>
</tr>
<tr>
<td>88</td>
<td>Relevés raccordés à un revêtement SBS : terrasses inaccessibles sur élément porteur en tôle d’acier nervurée et relief en costière métallique ... 130</td>
</tr>
<tr>
<td>89</td>
<td>Relevés raccordés à un revêtement SBS : terrasses inaccessibles sur élément porteur en bois massif ou panneaux structuraux CLT et relief en bois massif ou panneaux à base de bois .. 131</td>
</tr>
<tr>
<td>90</td>
<td>Relevés raccordés à un revêtement SBS : terrasses accessibles ou inaccessibles en climat de montagne ... 132</td>
</tr>
<tr>
<td>91</td>
<td>Relevés raccordés à un revêtement SBS : terrasses jardins 134</td>
</tr>
<tr>
<td>92</td>
<td>Relevés raccordés à des membranes synthétiques (PVC-P ou FPO) en terrasse inaccessible, techniques ou à zones techniques : principe d’arrêt en tête .. 135</td>
</tr>
<tr>
<td>93</td>
<td>Protection dure des relevés : règles de fractionnement 137</td>
</tr>
<tr>
<td>94</td>
<td>Protection dure du relevé : principe de raccordement avec les parties courantes constituées d’une protection dure autre que dalles sur plots .. 138</td>
</tr>
<tr>
<td>95</td>
<td>Protection par dalles sur plots : principe de raccordement de la protection dure du relevé avec les parties courantes constituées d’une protection dure par dalles sur plots .. 139</td>
</tr>
<tr>
<td>96</td>
<td>Protection des relevés par écran démontable en pied de façade rapportée 140</td>
</tr>
<tr>
<td>97</td>
<td>Relevé d’étanchéité : réalisation de la protection dure 141</td>
</tr>
<tr>
<td>98</td>
<td>Relevés d’étanchéité : recouvrement des éléments ... 142</td>
</tr>
<tr>
<td>99</td>
<td>Relevé d’étanchéité avec ou sans isolant : mise en œuvre du pare-vapeur 143</td>
</tr>
</tbody>
</table>
100 Façade isolée par l’extérieur donnant sur une toiture-terrasse accessible aux piétons avec écran démontable
101 Isolation thermique des acrotères : principe de compartimentage
102 Relevé d’étanchéité : fixation mécanique des panneaux isolants
103 Protection de la tête de relevé :
 costières métalliques, retrait avec becquet
104 Protection de la tête de relevé : costière métallique, couvertine
105 Relevé autoprotégé sur relief en maçonnerie raccordé à un revêtement asphalté
106 Relevé autoprotégé sur panneau isolant avec relief en maçonnerie raccordé à un revêtement asphalté
107 Relevé autoprotégé sur costière métallique, raccordé à un revêtement asphalté
108 Relevé autoprotégé raccordé à un revêtement bicouche SBS : support en maçonnerie
109 Application du Système d’étanchéité liquide (SEL) :
 relevés avec ou sans gravure, support avec pente > 1 %
110 Application du Système d’étanchéité liquide (SEL) :
 relevés avec bande de solin métallique, support avec pente > 1 %
111 Application du Système d’étanchéité liquide (SEL) :
 relevés avec imperméabilisation de façade, support avec pente > 1 %
112 Protection en tête de relevé : bande de solin métallique
113 Terrasses accessibles aux piétons avec dalles sur plots au-dessus du haut des relevés
114 Terrasses accessibles aux piétons avec dalles sur plots : dalles au-dessous des relevés, cas de l’écran démontable
115 Rampes : relevés raccordés à un revêtement d’asphalte
116 Acrotère de toiture-terrasse inaccessible de hauteur ≤ 60 cm au-dessus de l’isolation thermique : relevé isolé avec étanchéité apparente en feuilles bitumineuses
117 Acrotère de toiture-terrasse inaccessible ≤ 60 cm au-dessus de l’isolation thermique : relevé isolé avec étanchéité apparente en membrane synthétique
118 Acrotère de toiture-terrasse inaccessible ≤ 60 cm au-dessus de l’isolation thermique : verre cellulaire collé en plein à l’EAC
119 Acrotère de toiture-terrasse inaccessible ≤ 60 cm au-dessus de l’isolation thermique : isolants en polystyrène extrudé en isolation inversée
120 Acrotère de toiture-terrasse inaccessible ≥ 60 cm au-dessus de l’isolation thermique de partie courante
121 Acrotère isolé de toiture-terrasse accessible aux piétons avec protection par dalles sur plots
122 Fixation des garde-corps sur le dessus de l’acrotère : sabot de type Z
123 Fixation des garde-corps en applique sur la face intérieure de l’acrotère
124 Toitures-terrasses accessibles aux véhicules, avec protection lourde, acrotère isolé en totalité
125 Toitures-terrasses jardins, relevé isolé thermique : hauteur de terre
126 Toitures-terrasses jardins, relevé isolé thermique :
 hauteur de terre < hauteur isolant de relevé
127 Toitures-terrasses, terrasses jardins, coupe sur relevé avec isolation thermique :
 hauteur de terre > hauteur isolant du relevé
128 Retombée d’étanchéité
Joint de dilatation sur double costière sur élément porteur en maçonnerie et isolation inversée complémentaire.

Toiture végétalisée : avec isolation sous étanchéité.

Trop-plein : dimensionnement sur relevé et façade isolés aux véhicules légers.

Joint de dilatation plat surélevé : terrasses accessibles à base de bois.

Joint de dilatation plat pour terrasse accessible aux piétons.

Joint de dilatation : réalisation de l’étanchéité par feuille bitumineuse sur support isolant.

Joint de dilatation SUR élément porteur en bois ou panneaux à base de bois.

Joint de dilatation plat surélevé : terrasses accessibles aux piétons.

Entrées d’eaux pluviales traversant un relief ou située contre un relief.

Entrées d’eaux pluviales : section du moignon.

Entrées d’eaux pluviales : section du moignon en toitures terrasses inaccessibles, surface collectée ≤ 287 m².

Entrées d’eaux pluviales : avec gaines techniques intérieures isolées.

Entreprises d’eaux pluviales dites à sorties latérales.

Évacuation des eaux pluviales : crapaudine et garde-grève.

Évacuation des eaux pluviales : trop-plein, raccordement à l’étanchéité.

Trop-plein : dimensionnement sur relevé et façade isolés.

Principe de conception d’un escalier étanché et isolé : emmarchement rapporté sur isolation inversée.

Ressauts en toitures-terrasses inaccessibles.

Traversées.

Traversées avec dé en béton.

Raccordement à l’étanchéité à l’aide d’une crosse.

Bandes métalliques associées aux revêtements d’étanchéité.

Toiture végétalisée : composition.

Toiture végétalisée : toiture avec isolation thermique, cas courant.

Toiture végétalisée : toiture avec isolation thermique inversée.

Toiture végétalisée : avec isolation sous étanchéité et isolation inversée complémentaire.

Toiture végétalisée : zone stérile, caractéristiques.

Toiture végétalisée : emplacements des zones stériles facultatives ou indispensables.
Mise en œuvre du pare-vapeur :

- imprégnation de la maçonnerie par un enduit d'imprégnation à froid (EIF) à raison de 350 g/m² environ ;
- un écran perforé à sous-face ardoisée posé à sec avec recouvrements de 10 cm environ ;
- une feuille en aluminium bitume conforme à la norme NF P84-310, avec recouvrements de 6 cm, collée en plein au bitume chaud (EAC) exempt de bitume oxydé selon le DTA du revêtement d’étanchéité.

Figure 10.1 : Pare-vapeur sur local à très forte hygrométrie ou plancher chauffant assurant la totalité du chauffage
PARE-VAPEUR : ÉQUERRE

Dans le cas de pare-vapeur à base de feuilles bitumineuses, une équerre est soudée en plein sur les reliefs en maçonnerie. Cette équerre est choisie en fonction de l’épaisseur d’isolant à mettre en œuvre et des largeurs minimales de recouvrement avec le revêtement d’étanchéité.

![Figure 17.1 : Position de l’équerre et remontée du pare-vapeur](image)

Sur les reliefs en maçonnerie, une équerre, de développé suffisant, en feuille de bitume élastomère (SBS) de 3,5 mm d’épaisseur avec :
- un talon de 6 cm au minimum et
- une aile verticale dépassant d’une hauteur minimale de 6 cm le nu supérieur de l’isolant de partie courante.

Développé de l’équerre = 6 cm (talon) + épaisseur totale isolant + 6 cm (aile verticale). À ce jour, l’épaisseur d’isolant peut varier de 3 cm à 32 cm, voire plus.

Cette équerre est soudée en plein horizontalement sur le pare-vapeur et verticalement soit :
- sur le relief préalablement revêtu d’EIF, si le relevé n’est pas mis en œuvre sur une isolation thermique ;
- sur le panneau isolant vertical, si le relevé d’étanchéité est mis en œuvre sur une isolation thermique apte à recevoir un revêtement soudé.
PROTECTION SUR REVÊTEMENT BITUMINEUX ET MEMBRANE SYNTHÉTIQUE : PROTECTION PAR UN SYSTÈME DE VÉGÉTALISATION

Les constituants sont mis en œuvre directement sur le revêtement d’étanchéité.
La pente maximale est de 20 %, cependant des Avis Techniques particuliers de systèmes de végétalisation peuvent prévoir des limites supérieures.

La protection des toitures et terrasses végétalisées est constituée d’un système de végétalisation défini dans les Avis Techniques particuliers de procédés de végétalisation et se compose :
• d’une couche drainante pouvant être facultative pour une pente supérieure à 5 %.
 Les matériaux admis peuvent être :
 - des plaques de polystyrène moulées, alvéolées,
 - des agrégats minéraux poreux (pouzzolane, argile expansée, roche volcanique expansée, etc.) ou non poreux,
 - des éléments synthétiques prémoulés pouvant former ou non une réserve d’eau,
 - des matelas de drainage synthétiques ;
• d’une couche filtrante ;
• d’une couche de culture (substrat) ;
• d’une couche végétale.
Il existe également des systèmes « tout en un » se présentant sous forme de cassettes précultivées. Elles sont conçues pour une mise en place directe sur le revêtement d’étanchéité et sont mise en œuvre selon l’Avis Technique du procédé de végétalisation. Elles sont généralement reliées les unes aux autres.
TOITURES-TERRASSES JARDINS, RELEVÉ ISOLÉ THERMIQUE : HAUTEUR DE TERRE < HAUTEUR ISOLANT DE RELEVÉ

Cas des faibles épaisseurs de terre : la hauteur de terre ne peut être < 30 cm.

Figure 126.1 : Toitures et terrasses jardins, relevé avec isolation thermique – Protection de la partie visible de l’isolant en relevé, coupe

- Le relevé d’étanchéité doit dépasser de ≥ 15 cm le niveau du sol fini de la terre.
- L’isolant en relevé de hauteur nominale de 60 cm doit être protégé sur ses faces apparentes par une protection dure rapportée sur chantier ou intégrée au panneau en usine.